
323 323

323 323

323

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

The Making-of

This publication was produced with a set of digital tools that are
rarely used outside the world of scientific publishing: TEX, LATEX and
ConTEXt. As early as the summer of 2008, when most contributions
and translations to Tracks in electronic fields were reaching their final
stage, we started discussing at OSP1 how we could design and produce
a book in a way that responded to the theme of the festival itself. OSP
is a design collective working with Free Software, and our relation to
the software we design with, is particular on purpose. At the core
of our design practice is the ongoing investigation of the intimate
connection between form, content and technology. What follows, is a
report of an experiment that stretched out over a little more than a
year.

For the production of previous books, OSP used Scribus, an Open
Source Desktop Publishing tool which resembles its proprietary vari-
ants PageMaker, InDesign or QuarkXpress. In this type of software,
each single page is virtually present as a ‘canvas' that has the same
proportions as a physical page and each of these ‘pages' can be indi-
vidually altered through adding or manipulating the virtual objects
on it. Templates or ‘master pages' allow the automatic placement
of repeated elements such as page numbers and text blocks, but like
in a paper-based design workflow, each single page can be treated as
an autonomous unit that can be moved, duplicated and when nec-
essary removed. Scribus would have certainly been fit for this job,
though the rapidly developing project is currently in a stage that the
production of books with more than 40 pages can become tedious.
Users are advised to split up such documents into multiple sections
which means that in able to keep continuity between pages, design
decisions are best made beforehand. As a result, the design workflow
is rendered less flexible than you would expect from state-of-the-art

Open Source Publishing http://ospublish.constantvzw.org1



324 324

324 324

324

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

creative software. In previous projects, Scribus' rigid workflow chal-
lenged us to relocate our creative energy to another territory: that
of computation. We experimented with its powerful Python scripting
API to create 500 unique books. In another project, we transformed
a text block over a sequence of pages with the help of a fairy-tale
script. But for Tracks in electronic fields we dreamed of something
else.

Pierre Huyghebaert takes on the responsibility for the design of
the book. He had been using various generations of lay-out software
since the early 90's, and gathered an extensive body of knowledge
about their potential and limitations. More than once he brought up
the desire to try out a legendary typesetting system called TEX a
sublime typographic engine that allegedly implemented the work of
grandmaster Jan Tshichold2 with mathematical precision.

TEX is a computer language designed by Donald Knuth in the
1970's, specifically for typesetting mathematical and other scientific
material. Powerful algorithms automatize widow and orphan con-
trol and can handle intelligent image placement. It is renowned for
being extremely stable, for running on many different kinds of com-
puters and for being virtually bug free. In the academic tradition
of free knowledge exchange, Knuth decided to make TEX available
‘for no monetary fee' and modifications of or experimentations with
the source code are encouraged. In typical self referential style, the
near perfection of its software design is expressed in a version number
which is converging to π3.

For OSP, TEX represents the potential of doing design differently.
Through shifting our software habits, we try to change our way of
working too. But Scribus, like the kinds of proprietary softwares it is
modeled on, has a ‘productionalist' view of design built into it4, which

In Die neue Typographie (1928), Jan Tschichold formulated the classic canon of mod-2
ernist bookdesign.
The value of Π (3.141592653589793...) is the ratio of any circle's circumference to its3
diameter and it's decimal representation never repeats. The current version number of
TEX is 3.141592
“A DTP program is the equivalent of a final assembly in an industrial process”4
Christoph Schäfer, Gregory Pittman et al. The Official Scribus Manual.Fles Books,
2009



325 325

325 325

325

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

is undeniably seeping through in the way we use it. An exotic Free
Software tool like TEX, rooted firmly in an academic context rather
than in commercial design, might help us to re-imagine the familiar
skill of putting type on a page. By making this kind of ‘domain
shift'5 we hope to discover another experience of making, and find a
more constructive relation between software, content and form. So
when Pierre suggests that this V/J10 publication is possibly the right
occasion to try, we respond with enthusiasm.

By the end of 2008, Pierre starts carving out a path in the dense
forest of manuals, advice, tips-and-tricks with the help of Ivan Mon-
roy Lopez. Ivan is trained as mathematician and more or less famil-
iar with the exotic culture of TEX. They decide to use the popular
macro-package LATEX6 to interface with TEX and find out about the
tong-in-cheek concept of ‘badness' (depending on the tension put on
hyphenated paragraphs, compiling a .tex document produces ‘bad-
ness' for each block on a scale from 0 to 10.000), and encounter a
long history of wonderful but often incoherent layers of development
that envelope the mysterious lasagna beauty of TEX's typographic
algorithms.

Laying-out a publication in LATEX is an entirely different expe-
rience than working with a canvas-based software. First of all, de-
sign decisions are executed through the application of markup which
vaguely reminds of working with CSS or HTML. The actual design is
only complete after ‘compiling' the document, and this is where TEX
magic happens. The software passes several times over a marked up
.tex file, incrementally deciding where to hyphenate a word, place a
paragraph or image. In principle, the concept of a page only applies
after compilation is complete. Design work therefore radically shifts
from the act of absolute placement to co-managing a flow. All el-
ements remain relatively placed until the last tour has passed, and
while error messages, warnings and hyphenation decisions scroll by on
the command line, the sensation of elasticity is almost tangible. And

See: Richard Sennett. The Craftsman. Allen Lane (Penguin Press), 20085

LATEX is a high-level markup language that was first developed by Leslie Lamport in6
1985. Lamport is a computer scientist also known for his work on distributed systems
and multi-treading algorithms.



326 326

326 326

326

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

indeed, when within the acceptable ‘stretch' of the program place-
ment of a paragraph is exceeded, words literally break out of the grid
(see page 34 example).

When I join Pierre to continue the work in January 2009, the
book is still far from finished. By now, we can produce those typical
academic-style documents with ease, but we still have not managed to
use our own fonts7. Flipping back and forth in the many manuals and
handbooks that exist, we enjoy discovering a new culture. Though
we occasionally cringe at the paternalist humour that seems to have
infected every corner of the TEX community and which is clearly
inspired by witticisms of the founding father, Donald Knuth himself,
we experience how the lightweight, flexible document structure of
TEX allows for a less hierarchical and non-linear workflow, making
it easier to collaborate on a project. It is an exhilarating experience
to produce a lay-out in dialogue with a tool and the design process
takes on an almost rhythmical quality, iterative and incremental. It
also starts to dawn on us, that souplesse comes with a price.

“Users only need to learn a few easy-to-understand commands that
specify the logical structure of a document” promises The Not So
Short Introduction to LATEX. “They almost never need to tinker with
the actual layout of the document”. It explains why using LATEX
stops being easy-to-understand once you attempt to expand its strict
model of ‘book', ‘article' or ‘thesis': the ‘users' that LATEX addresses
are not designers and editors like us. At this point, we doubt whether
to give up or push through, and decide to set ourselves a limit of a
week in which we should be able to to tick off a minimal amount of
items from a list of essential design elements. Custom page size and
headers, working with URL's... they each require a separate ‘package'
that may or may not be compatible with another one. At the end of
the week, just when we start to regain confidence in the usability of
LATEX for our purpose, our document breaks beyond repair when we
try to use custom paper size with custom headers at the same time.

“Installing fonts in LATEX has the name of being a very hard task to accomplish. But7
it is nothing more than following instructions. However, the problem is that, first, the
proper instructions have to be found and, second, the instructions then have to be read
and understood”. http://www.ntg.nl/maps/29/13.pdf



327 327

327 327

327

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

In February, more than 6 months into the process, we briefly con-
sider switching to OpenOffice instead (which we had never tried for
such a large publication) or go back to Scribus (which means for
Pierre, learning a new tool). Then we remember ConTEXt, a rela-
tively young ‘macro package' that uses the TEX engine as well. “While
LATEX insulates the writer from typographical details, ConTEXt takes
a complementary approach by providing structured interfaces for han-
dling typography, including extensive support for colors, backgrounds,
hyperlinks, presentations, figure-text integration, and conditional com-
pilation”8. This is what we have been looking for.

ConTEXt was developed in the 1990's by a Dutch company spe-
cialised in ‘Advanced Document Engineering'. They needed to pro-
duce complex educational materials and workplace manuals and came
up with their own interface to TEX. “The development was purely
driven by demand and configurability, and this meant that we could
optimize most workflows that involved text editing”.9

However frustrating it is to re-learn yet another type of markup
(even if both are based on the same TEX language, most of the LATEX
commands do not work in ConTEXt and vice versa), many of the
things that we could only achieve by means of ‘hack' in LATEX, are
built in and readily available in ConTEXt. With the help of the
very active ConTEXt mailinglist we find a way to finally use our own
fonts and while plenty of questions, bugs and dark areas remain, it
feels we are close to producing the kind of multilingual, multi-format,
multi-layered publication we imagine Tracks in Electr(on)ic Fields to
be.

However, Pierre and I are working on different versions of Ubuntu,
respectively on a Mac and on a PC and we soon discover that our
installations of ConTEXt produce different results. We can't find
a solution in the nerve-wrackingly incomplete, fragmented though
extensive documentation of ConTEXt and by June 2009, we still have
not managed to print the book. As time passes, we find it increasingly

Interview with Hans Hagen http://www.tug.org/interviews/interview-files/hans-hagen8
.html
Interview with Hans Hagen http://www.tug.org/interviews/interview-files/hans-hagen9
.html



328 328

328 328

328

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

difficult to allocate concentrated time for learning and it is a humbling
experience that acquiring some sort of fluency seems to pull us in all
directions. The stretched out nature of the process also feeds our
insecurity: Maybe we should have tried this package also? Have we
read that manual correctly? Have we read the right manual? Did we
understand those instructions really? If we were computer scientists
ourselves, would we know what to do? Paradoxically, the more we
invest into this process, mentally and physically, the harder it is to
let go. Are we refusing to see the limits of this tool, or even scarier,
our own limitations? Can we accept that the experience we'd hoped
for, is a lot more banal than the sublime results we secretly expected?
A fellow Constant member suggests in desperation: “You can't just
make a book, can you?”

In July, Pierre decides to pay for a consult with the developers
of ConTEXt themselves, and once and for all solve some of the is-
sues we continue to struggle with. We drive up expectantly to the
headquarters of Pragma in Hasselt (NL) and discuss our problems,
seated in the recently redecorated rooms of a former bank building.
Hans Hagen himself reinstalls markIV (the latest in ConTEXt) on the
machine of Pierre, while his colleague Ton Otten tours me through
samples of the colorful publications produced by Pragma. In the af-
ternoon, Hans gathers up some code examples that could help us place
thumbnail images and before we know it we are on our way South
again. Our visit confirms the impression we had from the awkwardly
written manuals and peculiar syntax, that ConTEXt is in essence a
one man mission. It is hard to imagine that a tool written to solve
particular problems of a certain document engineer, will ever grow
into the kind of tool that we desire too as well.

In August, as I type up this report, the book is more or less ready
to go to print. Although it looks ‘handsome' according to some, due
to unexpected bugs and time restraints, we have had to let go of
some of the features we hoped to implement. Looking at it now, just
before going to print, it has certainly not turned out to be the kind of
eye-opening typographic experience we dreamt of and sadly, we will
never know whether that is due to our own limited understanding
of TEX, LATEX and ConTEXt, to the inherent limits of those tools



329 329

329 329

329

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

themselves, or to the crude decision to finally force through a lay-out
in two weeks. Probably a mix of all of the above, it is first of all a
relief that the publication finally exists. Looking back at the process, I
am reminded of the wise words of Joseph Weizenbaum, who observed
that “Only rarely, if indeed ever, are a tool and an altogether original
job it is to do, invented together”10.

While this book nearly crumbled under the weight of the projec-
tions it had to carry, I often thought that outside academic publish-
ing, the power of TEX is much like a Fata Morgana. Mesmerizing
and always out of reach, TEX continues to represent a promise of an
alternative technological landscape that keeps our dream of changing
software habits alive.

Femke Snelting (OSP), August 2009

Joseph Weizenbaum. Computer power and human reason: from judgment to calculation.10
MIT, 1976


